If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-20k+15=0
a = 5; b = -20; c = +15;
Δ = b2-4ac
Δ = -202-4·5·15
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10}{2*5}=\frac{10}{10} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10}{2*5}=\frac{30}{10} =3 $
| -7=-8+p/6 | | 4f+4=-2+5f | | 16x+44+x+85=180 | | 4f+4=–2+5f | | X=0.6x+660 | | x+52+x+44=180 | | 5^4x-2=125 | | 11x+x+96=180 | | 8-p=-8+6p-5p | | 3x-7=5x19 | | 5x÷(-55)=20 | | -3-5h=-10-4h | | x÷4=70 | | 19x-7+4x+49=180 | | –3−5h=–10−4h | | 1.8/1=x/200 | | 23x13= | | 2.4x=2.6=17 | | -5+8-7j=-9j-9 | | x+56+x+18=180 | | 12n+2n=26 | | 7x-38=40-6x | | (5x-10)=2 | | 7x+3=3x+3- | | 3x-4=188 | | x+74+x+48=180 | | x+10+x=110 | | 15=4.9t^2-1.7t | | 15=-4.9t^2-1.7t | | 95+x-10=180 | | 15=-4.9t^2+1.7t | | 275-19x=6x-250 |